
ISSN (Online) 2393-8021 
ISSN (Print) 2394-1588 

International Advanced Research Journal in Science, Engineering and Technology 
 Vol. 2, Issue 8, August 2015 
 

Copyright to IARJSET                          DOI 10.17148/IARJSET.2015.2817                                  70 

Exploiting the Vulnerabilities of Android Camera 

API 
 

Neha K. Malokar
1
, Nidhi Subramanian

2
, Shriranjani Sriram

3
, Sneha Venkat

4
, Zainab Khan

5
, Seema Shrawne

6 

Student, Department of Computer Engineering & Information Technology, V.J.T.I, Mumbai, India
1,2,3,4,5

 

Assistant Professor, Department of Computer Engineering & Information Technology, V.J.T.I, Mumbai, India
 6
 

 

Abstract: Most smartphones come with at least one camera, and camera is used mostly with media (photos, videos, 

etc.) sharing Android applications. Thus, hackers are finding devious ways to exploit the smartphone camera. 

Smartphones are almost always connected to the Internet. Most applications make use of the mobile data network or 

Wi-Fi to send and receive data, both in the foreground as well as in the background. In some cases, this sending and 

receiving of information helps in improving the efficacy of the application by connecting to, say, the social media 

accounts of the user or sending some user related information, such as location, to the application developer. This can 

help the developers to cater to the needs of the users in a better way and modify the application accordingly. However, 

as much as the Internet can be used to send and/or receive useful data, there is a very good chance of the same being 

exploited by malicious applications to transmit sensitive information which can be an infringement on the user's 

privacy. Such sensitive information can include personal photos, videos, SMS, etc. This transmission can very well 

happen without the user knowing about it.One attack that infringes on the user's privacy is a camera-based attack. There 

is a possibility that an Android Camera can be used to surreptitiously capture photos and/or videos without the user 

knowing about it. These captured photos and videos can be sent over mobile data networks or Wi-Fi to criminals/ 

hackers.Here, we attempt to implement the attack on mobile phones, and demonstrate the feasibility and effectiveness 

of the attack. Furthermore, we propose a defence scheme that can effectively detect these attacks and notify the user. 
 

Keywords: Android Security, Camera API, Camera Attack, SurfaceView, Background service. 

I. INTRODUCTION 

Android, as we know, is primarily a mobile (Smartphone) 

operating system. Developed by Google, it is based on the 

Linux kernel. 

Android has rapidly become the fastest-growing mobile 

OS, thanks to the contributions of the open-source Linux 

community and more than 300 hardware, software, and 

carrier partners [1]. 

Google Play Store (formerly Android Market) is currently 

the most popular app store for Android applications 

among commercial developers and the users can easily 

and quickly download new apps and games, with millions 

of apps being downloaded daily. The number of available 

apps in the Google Play Store has been most recently 

placed at 1.4 million apps in February 2015[2], and this 

popularity and accessibility of smartphone applications 

has, naturally, drawn the attention of attackers. 

Smartphone malware is easily distributed through an 

insecure app store. Often malware is hidden in pirated 

versions of legitimate apps, which are then distributed 

through third-party app stores. Malware risk also comes 

from what's known as an "update attack"[3], where a 

legitimate application is later changed to include a 

malware component, which users then install when they 

are notified that the app has been updated. 

Such vulnerabilities including the coarse permission 

system and over-privileging of applications can lead to 

exploitable applications. Consequently, several efforts 

have been made to investigate privilege problems in 

Android apps. 

In this paper, we demonstrate ways to hack into the 

Camera Application which exploit the loopholes found in  

 

 

the visibility options of Background Service and Android 

SurfaceView and use the flexibility given in specifying the 

FrameLayout size of the camera screen in order to develop 

applications that take pictures of users without their 

knowledge, thus breaching the Android security protocols. 

This is done in two ways. In the first method, the 

malicious application accesses the camera through 

SurfaceView. It then attempts to hide the camera preview 

by adjusting the preview size to ‘1 pixel x 1 pixel’ (using 

FrameLayout), which is so small that it cannot be visible 

to the naked eye. Thus, a dummy surface view is visible to 

the user and he/she is completely unaware of the 

application clicking pictures as he/she does not receive 

any notifications about any such activity.  

In the second method, we are using a base app 

‘FlashLight’ that appears as an application that just simply 

provides an option switch on and off the flash in our 

smartphone. This is used to mask the underlying Android 

code for clicking pictures. The malicious application is 

made to run in the background (using Background 

Service) and captures images without the user’s 

knowledge. Thus, the camera preview is automatically 

hidden, allowing the attacker to exploit the privacy of the 

user. 

These pictures clicked by the application can then be 

stored temporarily on the user’s phone by use of 

compression techniques (to compress the size of the 

captured images) and also creating hidden folders to store 

them. These then can be sent to the attacker’s server 

through unauthorized access of the user’s Internet 

connection.  



ISSN (Online) 2393-8021 
ISSN (Print) 2394-1588 

International Advanced Research Journal in Science, Engineering and Technology 
 Vol. 2, Issue 8, August 2015 
 

Copyright to IARJSET                          DOI 10.17148/IARJSET.2015.2817                                  71 

Detection mechanisms involve the use of the 

getRunningTasks() method, which returns the list of all  

the applications running in the background. Thus the user 

can accordingly kill suspicious tasks. It can be extended to 

display permissions granted to these applications, and 

options to disable them at the user’s discretion. 

Another more specific method detects whether an 

application is using the Camera object at a particular 

instant of time, thus notifying the user about the same. 

For prevention, we have proposed a solution to fix some 

minimum value for the dimensions of FrameLayout and 

thus, the camera preview size. For this purpose we show 

up to what value the human eye can see the FrameLayout, 

and in turn, prevent hiding of the preview screen. 

Implementation of this solution is left to the discretion of 

Android’s Developers. 

The paper is organized as follows. Section II describes the 

various aspects of the application. Section III demonstrates 

the two ways to exploit android camera in detail. Section 

IV explores some detection and prevention methods. 

Section V concludes the paper. Section VI lists the 

references. 

II. APPLICATION DESIGN 

Figure 1 explains the system design of Spying Application 

in which, it opens the camera and clicks pictures without 

user’s knowledge. These images can then be sent to the 

attacker via the Internet using HTTP or FTP protocols, and 

can be used for various malicious purposes.  

Figure 2 explains how the Detection Application works. It 

runs a code to attempt to obtain the Camera object and 

throws an Exception if it is found to be busy and further 

notifies the user about the same. 
 

 
                   Fig. 1.                                 Fig. 2. 
 

Figures 1 & 2 represent Spying and Detection applications 

III. WAYS TO EXPLOIT ANDROID CAMERA 

Camera use is popular with several applications that 

encourage photo sharing; hackers are finding sneaky ways 

to exploit them. Camera technically requires a preview to 

be displayed on screen in order to take video, but 

background services do not have associated visible 

activity. If you attach a preview to the screen from the 

background service, you can take a photo. Also, by 

adjusting the preview size to just 1 pixel x 1 pixel, an 

application can keep the camera running and click pictures 

without the user’s knowledge. 

A. 1 pixel x 1 pixel 

Key Classes and Methods: 

i. FrameLayout 

Frame Layout is designed to block out an area on the 

screen to display a single item. Generally, FrameLayout 

should be used to hold a single child view, because it can 

be difficult to organize child views in a way that's scalable 

to different screen sizes without the children overlapping 

each other [4]. 
 

ii. SurfaceView and SurfaceHolder 

SurfaceView have three primary usages: video playback, 

camera preview and 2D game. SurfaceView contains a 

SurfaceHolder which you can pass to MediaPlayer or 

Camera as display sink [5]. 
 

We have extended the SurfaceView class and implemented 

the SurfaceHolder.Callback interface. This class also 

contains a Camera object. When the surface is created, we 

set the Camera object’s preview in the SurfaceHolder of 

that surface and start the preview. This surface, in turn, is 

set inside the FrameLayout forming a nesting of views 

We can resize this FrameLayout to a very small size of 1 

pixel x 1 pixel. We can then have a normal application 

running in the rest of the window. One of the buttons in 

this window should trigger clicking of pictures by the 

camera or the camera can automatically start clicking 

pictures using some timer mechanism. Such a small 

camera preview screen size cannot be seen by the naked 

eye and hence, users are unaware of the camera clicking 

pictures, either while they are clicking the button (which 

they assume is for another purpose) or the camera is just 

clicking pictures on its own. Such a FrameLayout can be 

embedded in any seemingly normal looking application. 

B. Background Service 

A service is a component which runs in the background 

without direct interaction with the user. As the service has 

no user interface, it is not bound to the lifecycle of an 

activity. 

By default, a service runs in the same process as the main 

thread of the application. Asynchronous processing is 

required to perform resource intensive tasks in the 

background. A spying application could create and run a 

new Thread in the service to perform the processing in the 

background and then terminate the service once it has 

finished the processing. 
 

Key Classes and Methods: 

i. PendingIntent (android.app.PendingIntent) 

Instances of this class are created with getActivity(Context, 

int, Intent, int) and getService(Context, int, Intent, int); the 

returned object can be handed to other applications so that 



ISSN (Online) 2393-8021 
ISSN (Print) 2394-1588 

International Advanced Research Journal in Science, Engineering and Technology 
 Vol. 2, Issue 8, August 2015 
 

Copyright to IARJSET                          DOI 10.17148/IARJSET.2015.2817                                  72 

they can perform some action e.g. recording a video, 

capturing images, etc. Even if its owning application's 

process is killed, the PendingIntent itself will remain 

usable from other processes that have been given it [6]. 
 

ii. getActivity(Context context, int requestCode, 

Intent intent, int flags, Bundle options) 

Retrieve a PendingIntent that will start a new activity, like 

calling Context.startActivity(Intent). 

Parameters: 

 context - The Context in which this PendingIntent 

should start the activity 

 requestCode  - Private request code for the sender 

 intent -   Intent of the activity to be launched 

 Flags 

 options - Additional options for how the Activity 

should be started. May be null if there are no options 

Returns: 

 Returns an existing or new PendingIntent matching the 

given parameters 
 

iii. Fragment 

A Fragment represents a behavior or a portion of user 

interface in an Activity. You can combine multiple 

fragments in a single activity to build a multi-pane UI and 

reuse a fragment in multiple activities. A fragment must 

always be embedded in an activity and the fragment's 

lifecycle is directly affected by the host activity's lifecycle 

[7]. 

In our implementation, the widget for our spy application 

is a part of the fragment. The fragment contains the 

buttons of various modes of capture. 

The activity is sent to the background, when we exit our 

base application. We then attempt that our spy activity 

automatically captures pictures. 
 

iv. performClick()- This method is called on a view 

V. It calls the onClick(View v) of a class without having 

the user to actually click the View. In our implementation, 

this method is used to trigger automatic clicking of 

pictures by calling performClick() on the 'auto' button. 

IV. DETECTION & PREVENTION 

Here, we explore various ways to detect a malicious 

access to camera by an Android application. Also, we 

suggest some preventive measures. 
 

A. For 1 pixel x 1 pixel 

There can be a limit set for the lowest dimensions any 

layout can assume. This should be implemented in future 

versions of Android so that privacy of users is not 

compromised.  

After running the application with 5 users we could come 

up with an ideal limit for FrameLayout dimensions as 

follows: 

Each column contains the dimensions up to which a user 

was able to immediately observe a running camera in a 

FrameLayout at varying degrees of clarity. We assume a 

square shaped layout so that the dimensions are same on 

each side. 

TABLE I: FRAMELAYOUT DIMENSIONS 

User Very 

clear 

Faint Not visible  

clearly 

1 10 5 3 

2 12 6 3 

3 9 5 4 

4 11 6 4 

5 10 5 3 
 

From the above table, we can see that, it would be better if 

we can keep a minimum limit of 10 pixel by 10 pixel size 

for FrameLayout in future versions of Android. 

Dimensions in the next 2 columns will not serve any 

purpose for genuine Android developers and hence should 

not be allowed. 

The following screenshot shows a camera preview in a 10 

by 10 pixel size FrameLayout. 
 

 
 

Fig. 3.  Frame Layout of size- 10 pixel by 10 pixel 
 

B. For Background Service 

i. getRunningTasks(int maxNum) 

Return a list of the tasks that are currently running, with 

the most recent being first and older ones after in order 
 

Parameters: 

 maxNum - The maximum number of entries to return in 

the list. The actual number returned may be smaller, 

depending on how many tasks the user has started. 
 

Note:  As of LOLLIPOP, this method is no longer 

available to third party applications: the introduction of 

document-centric recents means it can leak personal 

information to the caller. For backwards compatibility, it 

will still return a small subset of its data: at least the 

caller's own tasks, and possibly some other tasks such as 

home that are known to not be sensitive [8]. 
 

By using the method getRunningTasks(), we can display a 

ListView of all the running applications to the user. The 

user then gets to know if there is any malicious application 

running in the background. 
 

ii. Using a detection application 

An application should only have one Camera object active 

at a time for a particular hardware camera [9]. We have 

implemented this in our detection application by using the 



ISSN (Online) 2393-8021 
ISSN (Print) 2394-1588 

International Advanced Research Journal in Science, Engineering and Technology 
 Vol. 2, Issue 8, August 2015 
 

Copyright to IARJSET                          DOI 10.17148/IARJSET.2015.2817                                  73 

method open(), to test whether any application is currently 

using the camera in the background. If a Camera object is 

already in use by some other application, the method 

throws an Exception and the user is notified. Then he can 

take appropriate actions. 
 

 
Fig. 4.  Detection Application screenshot 

V. CONCLUSION 

We provide methods to exploit the vulnerabilities in 

Android camera. We also propose minimum dimensions 

for the FrameLayout used in Android applications, to 

prevent misuse. Further, we have developed an application 

that detects whether the Camera object is being used by 

some other application in the background. 

 Android smartphones, being used everywhere, 

are subject to a wide variety of attacks through third-party 

applications. Android phones are almost always connected 

to the Internet and this makes them all the more vulnerable 

to attacks on privacy. Also, with the tremendous number 

of applications available and the permissions to be granted 

for installing them, most users tend to ignore the kind of 

permissions they are granting. In future, the developers at 

Android should consider such vulnerabilities while 

designing applications and also, users should ensure that 

they install applications from trusted sources. 

REFERENCES 

Portions of this research paper are reproduced from work created and 

shared by the Android Open Source Project and used according to terms 
described in the Creative Commons 2.5 Attribution License 

(http://creativecommons.org/licenses/by/2.5/). 

[1] Android’s Popularity 

http://enlightenedapps.com/blog/2014/09/01/android-the-worlds-  

most-popular-mobile-platform/ 

[2] Application Statistics 
http://www.statista.com/statistics/266210/number-of-available-

applications-in-the-google-play-store/ 

[3] Smartphone Malware Risk 
http://colectivodisenolatinoamerica.blogspot.in/2015/02/smartphon

e.html 

[4] FrameLayout 
http://developer.android.com/reference/android/widget/FrameLayo

ut.html 

[5] SurfaceView 
http://developer.android.com/reference/android/view/SurfaceView.

html http://pierrchen.blogspot.in/2014/03/anroid-graphics-

surfaceview-all-you.html 

[6] PendingIntent and getActivity() 

http://developer.android.com/reference/android/app/PendingIntent.h
tml 

[7] Fragments 

http://developer.android.com/guide/components/fragments.html 
[8] getRunningTasks 

http://developer.android.com/reference/android/app/ActivityManag

er.html 
[9] Camera Object 

http://developer.android.com/reference/android/hardware/Camera.h

tml 
[10] Smartphone Security 

http://www.crucial.com.au/blog/2014/10/21/smartphone-security-

hurdles-and-potential-solutions/ 
[11] Background Service 

http://www.vogella.com/tutorials/AndroidServices/article.html 

[12] Smartphone Camera Spying 
https://nakedsecurity.sophos.com/2014/05/28/yes-your-smartphone-

camera-can-be-used-to-spy-on-you/ 

http://snacksforyourmind.blogspot.co.uk/2014/05/exploring-limits-

of-covert-data.html 

[13] Detection of Camera Running 

http://developer.android.com/guide/topics/media/camera.html 

 

BIOGRAPHIES 
 

Neha K. Malokar will be graduating with a Bachelor's 

Degree in Engineering in Computer Science from 

Veermata Jijabai Technological Institute, Mumbai (India) 

in 2015.  

 

Nidhi Subramanian will be graduating with a Bachelor's 

Degree in Engineering in Computer Science from 

Veermata Jijabai Technological Institute, Mumbai (India) 

in 2015.  

 

Shriranjani Sriram will be graduating with a Bachelor's 

Degree in Engineering in Computer Science from 

Veermata Jijabai Technological Institute, Mumbai (India) 

in 2015.  

 

Sneha Venkat will be graduating with a Bachelor's 

Degree in Engineering in Computer Science from 

Veermata Jijabai Technological Institute, Mumbai (India) 

in 2015.  

 

Zainab E. Khan will be graduating with a Bachelor's 

Degree in Engineering in Computer Science from 

Veermata Jijabai Technological Institute, Mumbai (India) 

in 2015.  

 

Mrs. Seema Shrawne graduated with a Master’s Degree 

in Engineering in Computer Science from Veermata 

Jijabai Technological Institute, Mumbai (India) in 2014. 

She has been an assistant lecturer in the department of 

computer engineering and information technology 

department at Veermata Jijabai Technological Institute, 

Mumbai (India) for the last 15 years. Her areas of interest 

are Databases, Computer Networks and Information 

Retrieval.  

 

 

 


	A. 1 pixel x 1 pixel
	B. Background Service
	IV. Detection & Prevention
	V. Conclusion
	We provide methods to exploit the vulnerabilities in Android camera. We also propose minimum dimensions for the FrameLayout used in Android applications, to prevent misuse. Further, we have developed an application that detects whether the Camera obje...

	References

